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Abstract 

Population models can be an important tool in regulatory decision-making processes regarding natural resources, such as fisheries 
and rare species. Regulators presented with population models for their use often do not have the specific expertise to gauge the 
appropriateness of the model to their specific regulatory situation and decline their use in an abundance of caution. In other cases, 
regulators want to be involved with model development but may lack confidence in the utility of the models and their contribution 
to model development. The proposed process aims to address these concerns about using population models. The utility of popula
tion models depends on the available species data and the alignment of the model structure with regulatory needs. Importantly, the 
confidence in the available data and the model rigor need to match the types of decisions to be made, the time frame for reassess
ment, and the level of risk the regulator/agency deems appropriate. Model risk, defined as the possibility that the model is wrong or 
the output is misapplied, may stem from data limitations, parameter estimation uncertainty, model misspecification, or inappropri
ate use of a model. Here, we recommend a decision framework for considering the use of population models as a line of evidence in 
various regulatory contexts. The framework will assist regulators as they either work with modelers to construct new models or as 
they select from existing models to inform their decisions. Acknowledging and managing model risk increases the confidence of 
using models in regulatory contexts. As we move forward with utilizing models in regulatory decision-making, use of this process 
will ensure models fit the regulatory question, reduce model risk, and increase user confidence in applying models.
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Introduction
Whether it is forecasting the weather, calculating weight distri
butions aboard an airliner, estimating returns on investments, or 
designing the heat shield for a spacecraft, we rely on models for 
decision-making in many facets of modern life (Kay & King, 
2020). In each case, use of the model balances the need for the in
formation the model provides with the chance of that informa
tion being misleading. Consequences of relying on erroneous 
model output could range from a rainy day at the beach to a 
spacecraft breaking up during launch, so care is needed to select 
an appropriate model based on the data available and knowledge 
about the system (Kay & King, 2020). Modeling in the fields of bi
ology and ecology has been growing (Grimm et al., 2014; 
Raimondo et al., 2018, 2021), but its use related to natural re
source decisions has not been adopted as quickly (NAS, 
2007, 2013).

Although population models have been used in nonregulatory 
assessments (Mitchell et al., 2021; Topping & Odderskaer, 2004), 
formal decision-making processes specifically define the infor
mation that can be considered. Regulatory decisions based on 
natural resource statutes, such as the U.S. Endangered Species 

Act (ESA), often are required to consider the best available infor
mation when determining which management actions will fulfill 
the policy’s conservation or preservation goals. It ultimately is 
the responsibility of the decision-maker to determine the useful
ness and importance of information taken into account when 
making decisions, including assessing the benefits and risks of 
information derived from modeling. In the United States, the 
Magnuson-Stevens Fishery Conservation and Management Act 
uses management tools, including population models, to identify 
catch limits that prevent overfishing and ensure sufficient har
vests now and in the future (Federal Register, 2009). Population 
models have not been regularly used in other regulatory con
texts, such as the ESA and the Marine Mammal Protection Act 
(MMPA), which protect rare or declining species and their habi
tats. The infrequent use of population models for decisions about 
rare species has been primarily due to a lack of species-specific 
data needed to develop and parameterize the models. The 
National Academy of Science panel on Science and the 
Endangered Species Act (1995) discussed the successful applica
tion of spatially explicit population models in a few cases involv
ing rare terrestrial species. In one example, a northern spotted 
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owl model helped identify the specific populations critical to the 
viability of regional metapopulations (NAS, 1995). But they cau
tioned that, for most endangered species, the data necessary to 
sufficiently parameterize models were unavailable and would re
quire years of field work to obtain. In the meantime, they recom
mended continued application of ecological concepts related to 
population biology and habitat use to inform the conservation 
and recovery of endangered species (NAS, 1995, 2013). When 
data become available, the type and scope of the decision being 
made should influence the willingness and ability to incorpo
rate models.

Model use is accepted and encouraged for decision-making in 
fields such as finance, meteorology, air quality, and chemical 
transport/fate (Kay & King, 2020; NAS, 2007). The area of 
population-level risk assessment outlines model development 
methodology and application of the output for species that have 
available data (Forbes et al., 2009, 2010, 2011; Kramer et al., 2011; 
Raimondo et al., 2018, 2021). When regulatory actions involve 
rare species, hesitation in relying on models can arise from an in
complete understanding of the underlying biological processes. 
Fully quantifying these processes is complicated by inherent in
dividual variability, species-specific differences in responses, and 
scaling across levels of biological organization. To address con
cerns about quantifying biological scaling, the U.S. National 
Marine Fisheries Service (NMFS) constructed population models 
using empirical data and relationships to estimate the effects of 
pesticide exposure on ESA-listed Pacific salmon to inform biologi
cal opinions for pesticide reauthorization in the United States 
(NMFS, 2008, 2009). These models scaled effects across levels of 
biological organization from exposure to biochemical interaction, 
behavior changes, and alterations in individual survival and pop
ulation growth (Baldwin et al., 2009). Model output informed a 
line of evidence in the weight of evidence process in NMFS’s 
Biological Opinion (NMFS, 2008, 2009). Consequently, this appli
cation of population models was challenged and was one issue 
examined by a National Academy of Sciences (NAS) review panel. 
This panel recommended the use of population models when it 
was possible to parameterize them with species-specific data, in
cluding life history and population dynamics (NAS, 2013). Their 
report cautioned that when species-specific information, such as 
data quantifying density dependence, was not available, model 
use carried a high risk of misrepresenting the ESA-listed species 
and was inappropriate in the decision-making process (NAS, 
2013). This prompted our examination of the factors contributing 
to model risk and how its consideration can increase confidence 
when selecting models for informing regulatory decisions about 
rare species.

Model output can be very useful for informing regulatory deci
sions (Raimondo et al., 2021); however, what is still needed is a 
process for determining the tradeoffs when considering a popula
tion model for a regulatory question. Model output is often 
viewed as either completely mistrusted and dismissed or overly 
emphasized and relied on as truth or fact (Kay & King, 2020). To 
address these divergent points of view, model developers need to 
openly communicate with users, and both parties need to ac
knowledge the extent to which models are capturing or repre
senting the situation being assessed (Moon et al., 2017). As the 
adage goes, all models are wrong, some are useful (Box & Draper, 
1987). The responsibility of selecting the useful model for each 
decision ultimately lies with the regulator and is driven by bal
ancing the benefits of model use with potential losses. Losses re
fer to the currency of the decision; for financial decisions it is 
monetary loss, and for rare species it is declining population 

abundance. Models are beneficial when they reveal and quantify 
key factors about the system or evaluate alternative scenarios 
(Kay & King, 2020). Alternatively, the potential for loss if an error 
is made is high, potentially resulting in species extinction, for 
decisions involving threatened and endangered species. Model 
risk is defined as the risk that the model is wrong or the output is 
misapplied, as developed in the banking and financial fields 
(OCC, 2011). It has been established that a combination of blind 
faith in models that were flawed in structure and data and using 
those models outside of how they were designed were significant 
contributors to the 2008 financial crisis (Brown et al., 2015; Kay & 
King, 2020; Salmon, 2009). Therefore, applying the concepts of 
model risk management to model selection and application for 
regulatory decision-making will increase confidence in utilizing 
models and reduce the chance of misuse of model output. Model 
risk management has been formalized in the financial and bank
ing fields as a direct response to the role of models in the Great 
Recession (Brown et al., 2015). Although fields outside of finance 
do not have formal model risk governance policy, regulators and 
decision-makers are responsible for recognizing and accepting 
the consequences of decisions made with misapplied or errone
ous models. Here, we propose a process for determining when a 
model matches the regulatory needs by combining weight of evi
dence assessments of model risk with decision risk tolerance. 
Following this framework will increase confidence in the applica
tion of population models in regulatory decisions for rare species.

Process for evaluating data and models
When addressing a question regarding effects on an endangered 
species, regulators can develop a model for the situation or, more 
often, due to time and funding limitations, apply a model that is 
proposed to them. Proposed models may have been developed 
for a different purpose from the one being addressed or by an en
tity with a perspective on implementing the processes involved 
in the question that differs from the regulator. Assessing the 
available information about the regulatory question, the target 
species and potential models along with model risk will help de
termine whether a model would be beneficial in a regulatory con
text. We propose an adapted weight of evidence approach for 
assembling, weighing, and integrating the data and models to in
form a regulatory action. The extent of the regulatory action 
needs to be known, including what species may be involved and 
how the proposed action directly and indirectly interacts with 
the species. Effective models will describe how particular actions 
effecting individuals translate to impacts at a population scale. 
Models developed to fulfill these requirements can then inform 
particular lines of evidence in an assessment related to species 
abundance and productivity.

Below we have outlined a process for determining when the 
model risk is acceptable for applying a population model to a reg
ulatory question regarding rare or endangered species. The steps 
include: (1) define the regulatory context, (2) identify available 
data, (3) establish model objectives, (4) assess model structure, 
(5) match model complexity/scale, (6) recognize assumptions and 
uncertainty, and (7) evaluate/weigh model risk. Guiding ques
tions for each step in this process are listed in Box 1. This frame
work is intended for regulatory contexts that do not have an 
established model selection and review process (as is prescribed 
for fisheries stock assessment reviews in accordance with 
the National Standard 2 of the Magnuson-Stevens Act section 
302(g)(1)(E) Federal Register, 2009). Adhering to the proposed 
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framework will provide the decision-maker more confidence in 
incorporating a model into their regulatory situation.

Define the regulatory context
A primary requirement of applying models to regulatory decisions is 
clearly defining the regulatory action in terms of the implications for the 
species of interest. The first step in any decision process should al
ways be finding out “what is going on here?” (Kay & King, 2020). 
This could include asking to what extent a contaminant exposure 
will harm a rare or endangered species or slow its recovery. 
Clarifying the question defines the working context and leads to 
defining the potential impacts on the species, such as the life 
stages potentially affected, by how much, and how frequently. 
Thus, the effects of the action can be properly applied to the pop
ulation dynamics, reducing the chance for misleading output. It 
comes down to formulating/using an appropriate model with the 
correct tuning built in that allows parameter adjustment and in
vestigation of specific impacts representing the question. The 
model users are responsible for ensuring that the model applica
tion niche, defined as the conditions under which the use of the 
model is scientifically defensible (NAS, 2007), matches the regu
latory question. Using a model outside of the context for which it 
was designed can lead to misuse of output and erroneous conclu
sions as well as being open to legal challenge (Moon et al., 2017).

Basing decisions on clearly defined and desired population vi
ability endpoints, such as the population growth rate, abun
dance, or biomass, will focus the role of the decision within 
the regulatory context, regardless of whether a model is being 
considered. Once defined, these endpoints can guide the 
decision-making process and clarify a model’s ability to address 
the regulatory question. Aligning the model inputs with the 
management options/scenarios and the model outputs with reg
ulatory endpoints will ensure that the model directly relates to 
the management objectives.

Identify available data
The model appropriately uses the available data for the species (Box 2) 
and clearly communicates any limitations on how model output can be 
applied across populations/stocks. Threatened and endangered spe
cies often have a paucity of information available regarding basic 
life history and abundance. Large gaps in basic knowledge about 
a species may force a modeler to fill in missing information with 
assumptions based on other species. Models that include the use 
of surrogate data introduce the potential to produce output that 
can misrepresent impacts on the target species (NAS, 2013). 
Slight variations in life history strategies, such as which ages con
tribute more to population productivity, can result in large differ
ences in the responses of a species to management actions or 
stressors (Heppell, 1998; Spromberg & Birge, 2005). In light of 
this, we recommend being aware of the available life history data 
and focus models within the scope of the data and knowledge. 
This is particularly important for rare species. For example, if all 
individuals in a species make up a single population, then all 
available data can be combined in a model that applies to the 
population. However, if data are gathered from multiple popula
tions, some of which are not endangered and some are, combin
ing the data in a single model could produce output that is not 
representative of the rare population. Unfortunately, most rare 
species do not have sufficient data to conduct a status assess
ment, much less construct a model (Beissinger & Westphal, 1998; 
NMFS, 2004). In an effort to improve stock assessments a U.S. 
National Marine Fisheries Service workshop defined six data cat
egories, with levels 0–4 in each, to use in stock assessments: 
stock ID, abundance, life history, anthropogenic impacts, assess
ment quality, and assessment frequency. They found that data 
for the majority of marine mammals and sea turtles are at level 1 
for all six categories, which is inappropriate for use in any sort of 
quantitative models and therefore, professional judgement 

Box 1. Questions for evaluating model risk of models proposed to assess impacts of regulatory actions on threatened or 
endangered species.
(1) Regulatory Context: Is the role of the model in the regulatory context clearly identified?
Do the model inputs align with management options?
Are the model outputs directly related to management objectives/measures?

(2) Available Data: Are the available data sufficient to build and make effective use of a model? (Box 2)
If not, what types of data need to be collected to answer the question and develop the model?
Does the model make appropriate use of the available data for the species and stressor?

(3) Model Objectives: Are the goals and objectives of the model clear?
Were the model objectives developed with the regulatory question in mind?

(4) Model Structure: Are the specific approaches and methods scientifically rigorous and capable of addressing the goals 
and objectives?
Are there any significant conceptual flaws?
Does the model structure appropriately represent the species biology and life history and influence of the toxicity/stressor?
Has the model structure and data handling undergone review?

(5) Model Complexity: Are the level of complexity and scale of the model appropriate to the question?
Does the model output, characterized by metrics on initial conditions, population performance, and population dynamics, allow 
comparisons across scenarios within populations?
Does the sensitivity analysis of the model reveal any factors with outsized influence that is not expected from the life history?

(6) Assumptions and Uncertainty: Are model assumptions and uncertainties clear and appropriate for the modeled species?
Are model strengths and weaknesses identified in terms of the accuracy and precision of model output?

(7) Model Risk: Are methods described in sufficient detail and satisfy data, objective, assumption, and uncertainty issues for a 
regulator to be willing to accept the risks to apply the model output to a line of evidence and accept the consequences of the model 
being wrong?
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should inform regulatory questions (NMFS, 2004, 2013). Even if 
they are not used for decision-making, models developed with 
surrogate data and extensive assumptions can help identify and 
prioritize what types of data need to be collected as resources be
come available. As the amount and quality of knowledge about a 
species increases, models can be constructed with increasing 
specificity to the regulatory question and management applica
tion, which mitigates model risk.Addressing regulatory questions 
requires combining information and data on a species with spe
cific details on how the stressor or management action may in
fluence the species (Box 1). Combining the life history knowledge 
and stressor data into a conceptual model of the system can help 
define what, where, and how effects may occur. This could range 
from all individuals benefiting from improved habitat to focused 
effects of a contaminant targeting a single life stage. The key 
modeling step is establishing quantitative relationships between 
the action and the species, based on empirical data. The informa
tion allows integration of the effects of the stressor into the popu
lation model. Additional data on species ecology and spatial 
distribution can be integrated to address more detailed questions 
and allow more complex model development about restoration 
or consequences of an action.

Establish model objectives
Each model is developed to answer a specific question by combining data 
with derived or assumed mathematical relationships. The model ques
tion defines the model’s goals and objectives and lays out the ini
tial conceptual model, providing insights to the purpose for the 
model’s development. The models could fall into three catego
ries: those developed with input from the regulator/manager to 
examine a specific management action, those developed without 
input from regulators but designed to address regulatory ques
tions, or those designed for academic pursuits or other manage
ment questions that are later proposed for use in other 

regulatory situations. Ideally, models proposed for decision- 
making will be developed with the regulatory question in mind 

and with the regulator assisting in the model development 
(Raimondo et al., 2021), but when this is not the case, further ex
amination of model objectives is necessary. The model’s purpose 
defines its context and how the model output can be applied. In 
turn, the output directly applies to and answers the model ques
tion. A model solely designed to explore the repercussions of dif
ferent assumptions about a species’ life history may advance 
scientific knowledge but could be less appropriate for application 
to a regulatory context. These models inform basic research and 

hypothesis testing and guide field work. They also investigate 
management alternatives for restoration projects or future con
ditions, such as those resulting from projected changes in cli
mate. Although these types of models may influence decisions 
indirectly, they do not attempt to guide decisions and are clear 
about their shortcomings. For example, a demographic model 
was constructed to investigate the intrinsic growth rate and po
tential recovery times of the endangered smalltooth sawfish 
(Pristis pectinata; Simpfendorfer, 2000). Data gaps for several key 

life history characteristics (e.g., age at maturity, reproductive fre
quency, and life span) were substituted with assumed data from 
the more abundant largetooth sawfish (Pristis pristis; Carlson & 
Simpfendorfer, 2015). Although the model produced some insight 
into the possible range of population growth rates, the model 
assumptions also generated large variability in the output. The 
large variability makes its application to regulatory decisions re
garding chemical exposure impacts inappropriate without more 

species-specific data (John Carlson, NOAA Fisheries, personal 
communication, January 18, 2017). This results from the large 
range in assumed input parameter values that produce output 
that can be interpreted as both having an effect and no effect, in
creasing the model risk such that the model output is 

Box 2. Assessing key data needed for development/evaluation of population models:
Life History: Is the life history of the species or population(s) known based on empirical evidence, including: life span, time to repro
ductive maturity, fecundity, number of reproductive events/year or lifetime, age distribution?
Yes—Proceed to identifying data sources
No—Insufficient data are currently available to proceed with building a reliable model with model risk appropriate to represent 
this population. Encourage further data collection.

Data sources for parameterizing demographic rates

� Are all individuals in the species part of one single population? 
− All available data can be used together in defining the population model. 

� Are the data representative of the whole rare species? 
− If so, model output could be applied to all segments of the species. 

� Are data from the same species, but multiple different populations that share a life history strategy and are also listed under 
the ESA? 

− A generic model of the species can be made and used with caution (similar to the generic salmon models used by NMFS 
for the pesticide consultations.) 

Toxicity/Stressor/Action information requirements:
Link available stressor/action information to demographic rates in the model structure.
Integrate the quantifiable relationships to the demographic rate(s) affected by the action

� Make sure the measurement endpoint can be translated into quantifiable factors for the assessment (e.g., how decreased 
somatic growth relates to survival). 
� When the stressor affects specific ages or life stages, apply the impact directly to those survival or reproductive rate(s) to 
capture the potential impacts 
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inappropriate for the regulatory decision and cannot provide use
ful information to managers for making a decision.

Assess model structure
Along with input parameters and output endpoints that align with the 
regulatory question, models demonstrate that they apply approaches 
and methods that are scientifically based and capable of addressing the 
stated goals and objectives with the data available. The model struc
ture must accurately represent the species biology, life history, 
and responses to stressors based on the best available science 
and professional judgement of species specialists. In short, the 
behavior of the model matches and reflects the behavior of the 
system. This ability to represent specific biological relationships 
using mechanistic models allows incorporation of specific stres
sors. For example, Baker et al. (2018) found that a simple mecha
nistic model that assessed the effects of an exposure to a 
chemical with a known mode of action can reveal behaviors in 
output that might be missed by purely statistical or machine 
learning models. Ensuring that the model represents the system 
can also be supported through model verification and confirma
tion (Oreskes et al., 1994). In practice, this can be done by show
ing that the relationships and computations accurately 
characterize scientifically accepted theories, empirical data, and 
algorithms all from peer reviewed or expert sources. How the 
model handles environmental trends, fluctuations, and density 
dependence will depend on the model structure, but differences 
in structure can result in different outcomes (Beissinger & 
Westphal, 1998). The requirements for the model structure in
form the selection of the modeling method, which is beyond the 
scope of this article. Several excellent reviews examine the 
attributes of available methods and guidance for model develop
ment (Forbes et al., 2009; Grimm et al., 2014; Munns et al., 2008; 
Raimondo et al., 2018, 2021; Schuwirth et al., 2019). Keep in mind 
that the model structure and data define the application niche, 
the set of conditions under which the use of the model is scientif
ically defensible (Moon et al., 2017). Use of models outside of 
their application niche can lead to erroneous decisions and un
dermine confidence in model use. Independent review of both 
the completed model and its underlying data can confirm the ap
propriateness of the application niche and increase confidence 
for the model use in a regulatory context.

Align model complexity/scale
The model complexity and scale match the scale of the regulatory ques
tion and the data. Each regulatory question inherently has a scale 
of focus that decisions will influence. Relevant scale considera
tions include the biological and geographic. Models can translate 
effects from biomolecules to cells to organs and up to the organ
ism and population. Regulatory decisions will apply to geo
graphic regions and/or population units, so models also need to 
address the appropriate scale. A geographic scale can range from 
a local site that a portion of a population will inhabit to an entire 
species range. Knowing the population range and portion of the 
population affected by the decision will help identify the proper 
model scale needed. The model complexity also needs to follow 
from the available data to minimize the use of assumptions that 
introduce unnecessary uncertainty. It is well established that 
adding complexity for the sake of complexity contributes to in
creased uncertainty and model error (NAS, 2007; Saltelli et al., 
2020). Increasing complexity in an attempt to more accurately 
represent reality can still fail to capture important features of 
the system (Saltelli et al., 2020). A model that tracks an individu
al’s daily movement through a territory may be unnecessarily 
complex for an impact that covers areas much larger than 

individual territories and/or over seasons or years. Additionally, 

the model inputs and initial conditions need sufficient detail and 

complexity to allow for assessing comparison of management 

alternatives or regulatory scenarios under consideration. If an as

sessment involves selecting the best option among several sce

narios, the model input parameters need to be adjustable at a 

scale sufficient to differentiate between the scenarios. For exam

ple, scenarios that look at differences in contaminant exposure 

on individuals at a specific life stage needs a model that can 

modify the survival rate of the target stage separate from the 

other stages. It can be thought of as having the right set of knobs 

and sliders to tune the model to the proper settings and explore 

scenarios and management alternatives.

Recognize model assumptions and uncertainty
All model assumptions and model uncertainty are clear and appropriate 

for the species. This is particularly key if a model was adapted 

from a previous application; in this case, there is a need to con

firm that the assumptions fit the current situation. The assump

tions define the applicability of the model to the question (NAS, 

2007), and clearly communicating the major assumptions will 

ensure appropriate use (Saltelli et al., 2020; Schuwirth et al., 

2019). Identifying the strengths and weaknesses stemming from 

the assumptions in terms of model output precision and accu

racy will clarify the consequences on model output of violating 

the major assumptions. The uncertainties associated with the 

model assumptions also may bias the model endpoints. Model 

uncertainties can stem from lack of knowledge of the system or 

errors in model relationships and assumptions. For example, 

measurement error may mean that the appropriate value for a 

potentially stable parameter is uncertain. Alternatively, natural 

variability may mean that a parameter value may be known for 

one year but will differ in future years. Conducting rigorous sen

sitivity and uncertainty analyses will explain the sources of un

certainty in the model output (Saltelli et al., 2020). A sensitivity 

analysis will identify which model parameters have the strongest 

influence on model output independent of variability. 

Uncertainty analysis can determine which parameters account 

for the most uncertainty in the model output. The primary way 

to account for uncertainties associated with parameter variabil

ity is to integrate measures of variability into models and mathe

matically propagate the variability from input parameters 

through to model output.
Acceptance and use of model output that consists of a single 

value with no estimate of uncertainty is naïve at best or decep

tive at worst and jeopardizes the integrity of the decision-making 

process. Model uncertainty communicated in terms of its magni

tude relative to the baseline model output magnitude provides a 

clear gauge of how the uncertainty influences the output. Model 

output with high uncertainty, even due to natural variability in 

the system, may be less useful in a regulatory setting and lead to 

erroneous decisions. For example, natural variability can mask 

an effect based on the factors included in the model (Spromberg 

& Scholz, 2011). With additional information, it may be possible 

to determine whether the high uncertainty can be attributed to 

natural variability or errors in model structure or assumptions 

(NAS, 2007). In either case, using a model with high uncertainty 

can be done after carefully weighing and communicating how 

the uncertainty will be incorporated into the decision-making 

process (NAS, 2007) and the consequences, in terms of model 

risk, if the uncertainty results from model error.
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Evaluate/weigh model risk
The methods and data are described in sufficient detail for the regulator 
to confidently apply model output and accept the risk that the model is 
inaccurate. As discussed in the Introduction section, in the field of 
finance, the responsibility of model accuracy or inaccuracy falls 
on the user applying the model (Black et al., 2017; OCC, 2011). 
Therefore, the user needs to understand the model in terms of 
the steps discussed in the Process for evaluating data and models 
section and accepts the risk and consequences associated with 
decisions based on model output. In contrast, statutes and 
agency procedures may prescribe how to deal with uncertainty 
in regulatory contexts. For example, U.S. ESA Section 7 consulta
tions require federal agencies to ensure that their actions do not 
jeopardize the continued existence of any ESA-listed species. In 
dealing with uncertainty, federal agencies must adopt proce
dures to minimize error that could result in management deci
sions that will protect the species less than is necessary (NAS, 
1995). In a statistical context, it is equivalent to avoidance of type 
II error, saying no effect exists when one actually does. Model 
risk may stem from three basic sources: data limitations (in 
terms of both availability and quality); estimation uncertainty or 
methodological flaws in the model’s design (simplifications, 
approximations, wrong assumptions, incorrect model design, 
etc.); and inappropriate use of the model (using the model out
side its intended use or application niche). Addressing the issues 
raised in the process outlined in the Process for evaluating data and 
models section will clarify the model risk. We recommend a con
ceptual approach be applied to determine if the model fits the 
regulatory question. We propose an adapted weight of evidence 
approach to integrate the categories outlined in that section into 
lines of evidence to qualitatively evaluate model risk (Figure 1). 
The weight of evidence evaluation considers each question re
garding model appropriateness as an individual line of evidence, 
which is assessed independently (Linkov et al., 2009). Each line of 
evidence is gauged from low to high and an overall model risk is 

assigned. This can be visualized graphically as choosing a risk 
factor level along a risk bar (Figure 1). A model that fully satisfies 
all of the questions in Box 1 would have a low model risk. The 
further the model deviates from alignment with the questions, 
the higher the model risk.

The level of model risk deemed acceptable to a decision-maker 
depends on the consequences of being wrong (Table 1), and can be 
considered the risk tolerance or risk appetite (Black et al., 2017). It 
will depend on areas of concern, such as the species status and fre
quency of reassessment, assuming it can occur. The difference be
tween decisions that will stand for 2 vs. 50 years is similar to the 
financial investment strategy of short- vs. long-term risk. How 
much can one afford to lose in the time period before reassessment 
and a chance for a course correction, if reassessment ever hap
pens? Another qualitative weight of evidence approach can define 
the risk tolerance specific to each regulatory context (Figure 2). To 
visualize for each area of concern, the region of risk tolerance will 
extend from the low end to the assigned risk tolerance (Figure 2). 
Less risk is acceptable when the consequences are high, such as a 
large potential for species decline or extinction before the question 
will be reexamined and management adjustments can be made. 
Higher model risk may be acceptable when frequent reassessment 
will occur. The two weight of evidence assessments are then com
bined to determine whether the model risk and risk tolerance 
match up (Figure 3). If the model risk is higher than the risk toler
ance, then the model would be a poor match for the regulatory sit
uation and its use could be misleading.

The process outlined in the Process for evaluating data and mod
els section addresses concerns about model risk related to effects 
on endangered species and proposes an approach to evaluate 
and minimize model risk, similar to financial institutions estab
lishing model risk management policies to address the costs as
sociated with model use (Bennett, 2017; OCC, 2011). As discussed, 
ways to lower the model risk include strict review/oversight in 
model development, tailoring models to specific regulatory 

Figure 1. Six factors that contribute to a weight of evidence assessment for evaluating model risk. Each factor (black horizontal bar) is considered when 
determining the overall model risk. The horizontal black bar placements are for visual example, and do not represent a specific case.
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applications, and limiting complexity to the scope and scale nec
essary (Black et al., 2017). In cases when there are concerns re
garding data availability, surrogacy, or model assumptions, there 
are still options for using models to inform decisions. One option 
for mitigating model risk is by making decisions using a weight of 
evidence approach, with model output being one consideration 
among several informing a line of evidence. This will assure that 
decisions are not relying only on a model’s output. Another 

option is to use ensembles of models to address the same ques
tion. The power of ensembles is that when multiple models that 
have different structure or input data provide consistent output, 
it increases the confidence in those output (Anderson et al., 2017; 
Jardim et al., 2021). Management strategy evaluation is a decision 
support framework that evaluates management scenarios using 
a closed feedback loop of models and observations under a range 
of uncertainties (Kaplan et al., 2021; Punt et al., 2016; Walter 

Table 1. Risk tolerance for various types of regulatory decisions.

Reassessment time frame Decision Species/population Stake: What could you lose 
if the model is inaccurate 
or incorrectly applied?

Risk tolerance: How 
comfortable with being 
wrong? (level of 
conservatism)

Short (1–5 years) Stock assessment and 
harvest limits

Harvested or bycatch  
rare species/stocks

Abundance/biomass 
decline/overharvest of 
fishery. 
Economic loss from catch 
limits set too low.

Low to moderately con
servative ¼
medium to high 
risk tolerance

Medium (4–10 years) ESA (U.S. Endangered 
Species Act) Consultation: 
Columbia 
River Hydropower

Threatened or 
endangered species

Decline or delayed 
recovery of ESA-listed 
salmon species. Loss of 
hydropower production.

Highly conservative ¼
low risk tolerance

Medium (varies based 
on endpoint)

Restoration efficacy Threatened or 
endangered species

Delay in recovery of 
threatened or 
endangered species.

Moderately conservative 
¼medium risk tolerance

Long (15þ years) ESA Consultation: Federal 
Insecticide, Fungicide, 
and Rodenticide Act 
(FIFRA) pesticide 
registration

Threatened or endan
gered species

Decline/delayed recovery/ 
extinction of an  
ESA-listed species.

Highly conservative ¼
low risk tolerance

Figure 2. Factors regarding areas of concern that contribute to a weight of evidence assessment of risk tolerance/appetite (represented by the shaded 
dashed box) to determine whether a model is a match for the regulatory question. The dashed boxes here are visual examples, and do not represent a 
specific case.
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et al., 2023). A set of models make up the operating model, which 
represents the biological components of the system, the influ
ence of the regulatory question on the system, and the imple
mentation options of the management regulation (Punt et al., 
2016). The cyclic nature of the process provides inherent reex
amination of model uncertainty and output and minimizes 
model risk.

In addition to using sound modeling techniques and model 
validation, the Office of the Comptroller of the Currency (OCC) 
suggests that the model risk management process rely on the ex
pert judgement of model users to ensure that models continue to 
perform properly and the users do not blindly accept model out
put as truth (OCC, 2011). This is similar to recommendations 
from environmental modeling (NAS, 2007). Models are effective 
tools when used appropriately but should not be treated as fact 
to the exclusion of other information. An extreme case of overre
liance on and misapplication was the financial markets’ reliance 
on David Li’s Gaussian copula function, which led directly to the 
Great Recession (Black et al., 2017; Salmon, 2009). End users mis
understood or overlooked the model assumptions and limita
tions, failing to recognize the mismatch between model risk and 
risk tolerance, and that oversight had catastrophic repercussions 
(Figure 3A; Black et al., 2017; Kay & King, 2020). This example 
highlights that users must understand the models they are using 
and that model output informs one line of evidence in an assess
ment and does not automatically supersede the rest of the as
sessment or expert judgement. Expert judgement fulfills an 
essential role in scientific investigation and decision-making 
(Brownstein et al., 2019). In an exercise to assess ESA species list
ing decisions based on expert judgement, a Bayesian model in
corporating stock abundance, number of populations, 
abundance trend, and generation time examined the listing deci
sions of 14 marine species assessed between 1997 and 2011. 
Contrary to expectation, expert judgement performed equally to 
the Bayesian models and resulted in the same decisions for 

categorizing each species as endangered, threatened, or not war
ranted for listing (Boyd et al., 2017).

Population models can add value to an assessment because 
appropriately applying them to regulatory decisions regarding 
endangered species can increase transparency and reproducibil
ity (Forbes et al., 2009; Raimondo et al., 2018, 2021). Frameworks 
have been proposed for how to develop models and apply the 
output to match specific questions when the time and resources 
are available (Raimondo et al., 2018, 2021). In addition to this, 
having the separate process specifically focused on reducing 
model risk will increase credibility and confidence in the models 
selected, as has occurred in other fields (Black et al., 2017; 
Townsend et al., 2019). One process for assessing existing models 
is outlined in this article. An alternative process could be formal 
independent review boards, as are found in fisheries stock 
assessments and the Federal Columbia River Power System. 
Adopting any type of formal review process will require an in
vestment of staff time. Similarly, regulatory staff time is required 
for developing models for specific questions, as it requires coordi
nation with modelers and species specialists, but this is the pre
ferred process because it ensures alignment of objectives and 
assumptions. Examples of these approaches are discussed as 
case studies.

Case studies of models and ESA 
regulatory decisions
Under Section 7 of the U.S. ESA, each federal agency is required 
to ensure that any action they authorize, fund, or carry out is not 
likely to jeopardize the continued existence of any endangered or 
threatened species (ESA-listed) or result in the destruction or ad
verse modification of critical habitat of listed threatened or en
dangered species (50 CFR §402.14(a)). The National Marine 
Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service 
(USFWS) are responsible for implementing the ESA and making 

Figure 3. Model risk (horizontal black bar) and risk tolerance (shaded dashed box) are combined to determine whether a model is a match for the 
regulatory question. (A) Moderately high model risk and low risk tolerance mismatch for this regulatory question. (B) Model risk is moderately high, but 
risk tolerance is high, so model and question match. (C) Low model risk and low risk tolerance, so model and question match.
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decisions that affect ESA-listed species under their jurisdiction. 
One example of ESA implementation is consultation with the rel
evant regulatory agencies on proposed actions to determine the 
risk an action poses to a species’ survival and recovery. The use 
of population models has been growing and following are some 
examples of when models were considered in the consulta
tion process.

Northern spotted owl conservation planning
After a 90% decline in available habitat, the northern spotted owl 
(Strix occidentalis caurina) was listed as threatened under the ESA 
in 1990 (Federal Register 55(123): 26114–26194, 26 June 1990). In 
support of developing the species conservation plan, a series of 
models were developed to guide decisions regarding size and lo
cation of habitat reserves of old growth forest necessary for spot
ted owl viability. Models evolved from simple to spatially 
complex as the questions evolved from a status assessment to 
considering the best size and placement of habitat reserves. 
Although the demographic models revealed that adult survival 
had the greatest influence on population growth rate, the spa
tially explicit models revealed that if juveniles dispersing from 
their natal habitat were unable to find a mate in a suitable terri
tory, such as in a highly fragmented habitat, the populations 
would be at greater risk of decline and extinction (McKelvey 
et al., 1993). Data from targeted research on the listed popula
tions informed the models, which decreased model risk. The risk 
tolerance was low due to the low population abundance and spa
tial distribution when the management actions were being con
sidered (McKelvey et al., 1993, Figure 4A).

Cape Wind proposed offshore wind facility
The U.S. Fish and Wildlife Service consulted with the Minerals 
Management Service on their proposed lease for the construc
tion, operation, and decommissioning of 130 wind turbine gener
ators in Nantucket Sound. The 20-year project duration was 
assessed to determine the potential impact to endangered rose
ate terns (Sterna dougallii dougallii) that utilize the habitat (USFWS, 
2008). Collision-induced mortality during foraging and migration 
flights was estimated at 4–5 roseate terns per year. This and re
lated dependent offspring mortality were included in a 
consultant-proposed population viability analysis (PVA) to assess 

the implications to extinction risk of the Cape Wind Project. The 
PVA aimed to assess extinction risk, but the reliable estimates of 
extinction risk were short-term and did not extend through the 
project duration, decreasing the applicability of the model out
put. Models showed that key demographic parameters of juvenile 
survival and recruitment had dramatic effects on population 
growth rate but were also highly uncertain becuase they were 
not well studied, increasing model risk. The USFWS species spe
cialists determined that the PVA model had limited value in 
assessing the population level effects of the project on roseate 
terns, a medium to high model risk, and did not rely on the PVA 
for determining whether the project would jeopardize the contin
ued existence of the species (USFWS, 2008, Figure 4B).

Federal Columbia River power system 
consultations
A suite of over 20 Pacific salmon life-cycle models (LCMs) have 
been developed for ESA-listed interior Columbia River popula
tions by NMFS and have been used to inform the Federal 
Columbia River Power System Biological Opinions. The LCMs 
have been documented and undergone scientific review prior to 
being applied in a regulatory context (e.g., Crozier et al., 2021; 
Pess & Jordan, 2019; Zabel & Jordan, 2020). The LCMs have been 
designed with the capability to evaluate population responses to 
hydropower operational alternatives and were also used to esti
mate habitat restoration actions implemented to mitigate effects 
of the hydropower system on ESA-listed salmonids. Proposed op
eration and mitigation alternatives are evaluated using the LCMs 
to assess potential changes in adult abundance, extinction risk, 
and productivity (Pess & Jordan, 2019). The LCMs are parameter
ized and calibrated using long-term datasets (Pess & Jordan, 
2019; Zabel & Jordan, 2020). The models were informed by input 
and feedback from regional scientists and stakeholders, includ
ing: federal, state, and tribal resource managers, consultants, 
and hydropower districts. This process aligns the conceptual 
models, data sources, model assumptions, structure, and output 
to local knowledge with the intent that they be appropriate for 
informing the regulatory decisions. The LCMs have been scruti
nized by NMFS scientists and by the Independent Scientific 
Advisory Board to the Northwest Power and Conservation 
Council. The LCMs can be updated with new data and rerun if 

Figure 4. Visual representation of the alignment of risk tolerance and model risk when considering model use in the case examples of the conservation 
plan, northern spotted owl (A), Cape Wind Project, roseate tern (B) Federal Columbia River Power System(FCRPS), Pacific salmon (C), and pesticide 
consultations on Pacific salmon (D) and smalltooth sawfish (E).
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there is a need to evaluate actions under a biological opinion (typi
cally every four years) or to estimate effects of additional proposed 
actions, which lowers model risk. The short reassessment fre
quency also allows for a moderate tolerance of risk. Overall, these 
models have low risk for these regulatory questions because they 
are specifically designed to match the questions, are parameter
ized with data specifically collected to inform the models, match 
the complexity of the question, and directly communicate their 
uncertainty and assumptions (Figure 4C).

National pesticide consultations
The NMFS entered into formal consultation with the U.S. 
Environmental Protection Agency (USEPA) to determine whether 
USEPA’s reauthorization of the use of specific anti- 
acetylcholinesterase pesticides posed a risk to ESA-listed Pacific sal
monids (NMFS, 2008). Regulators and modelers worked together to 
construct models to determine the relative change in population 
growth rate resulting from anti-acetylcholinesterase (AChE) pesti
cide exposure during the freshwater growth phase of subyearling 
Pacific salmon. The model output directly informed the juvenile ex
posure line of evidence in the assessment (NMFS, 2022). The team
work ensured the exposure and effects assumptions and the model 
output would match the needs of the assessment.

The ESA-listed species of Pacific salmon are generally considered 
data rich and the life histories are well established. Although data 
about survival and reproduction were available for some of the 
ESA-listed stocks and ESUs, there was not enough to parameterize 
a model unique for each ESA-listed ESU. Rather, data gathered 
from ESA-listed populations of each species were used to construct 
generic models for four life history strategies exhibited by ESA- 
listed Chinook (Oncorhynchus tshawytscha), coho (O. kisutch), and 
sockeye (O. nerka) salmon. Modeling the effects of pesticide expo
sure on individual salmon relied on empirical data linking 
pesticide-induced declines in AChE activity to decreased feeding 
ability, resulting in reduced somatic growth of juvenile salmon 
(Sandahl et al., 2005). Published data linked juvenile salmon size to 
age-specific survival (Zabel & Achord, 2004) and this relationship 
allowed the development of models investigating changes in popu
lation productivity (Baldwin et al., 2009; Macneale et al., 2014). The 
somatic growth portion of the model tracked changes in body size 
of juvenile salmon during their first year and linked to a population 
model through a size-dependent first-year survival rate. First-year 
survival was the only demographic parameter affected by the pesti
cide exposure and the one with direct empirical data, simplifying 
the modeling and reducing complexity. This assumption means 
that the effects seen in the model output could be an underesti
mate of actual impacts, but because these chemicals are not bioac
cumulative, the physiological impairments are short term, and the 
exposures are primarily limited to the juvenile freshwater stage, 
the risk of misrepresenting the effects was determined to be low. 
The pesticide growth model integrated effects on juvenile body size 
with effects of the insecticides on prey availability and linked them 
with the population model. Model components represented differ
ent biological scales and used empirical data to inform key links be
tween the scales. Model assumptions were supported by 
experimental data (Baldwin et al., 2009; Macneale et al., 2014). 
Sensitivity analyses ensured no parameters had undue influence 
from what would be expected on model output. Natural variability 
in the data was included by selecting every parameter from a distri
bution of its mean and standard deviation each iteration in the 
model runs. The models initially underwent iterative peer review 
by NMFS scientists with expertise in modeling and Pacific salmon 
population dynamics. These scientists ensured that the model 
structure and assumptions did not misrepresent, misinterpret, or 

overinterpret the available data. Additionally, the models were 
reviewed by anonymous reviewers when published in peer- 
reviewed journals. These multiple layers of review served to reduce 
the model risk. As the USEPA is officially tasked with reauthorizing 
pesticide use every 15 years, decisions using erroneous model out
put would be not be reassessed for several generations of the 
salmon populations. Therefore, the tolerance for model risk was 
low (Figure 4D). The model output informed one line of evidence in 
the assessment and was not relied on for the entire assessment. In 
all cases, model output concurred with the other lines of evidence 
(NMFS, 2008).

Once the Pacific salmon pesticide models were established, it 
was proposed that a published smalltooth sawfish model developed 
to explore life history characteristics (Carlson & Simpfendorfer, 
2015; Simpfendorfer, 2000) be adapted to incorporate the effects of 
anti-AChE pesticides exposures. The life-history and demographic 
data gaps in the proposed model utilized data from nonlisted spe
cies of largetooth sawfish. Toxicity data would be derived from sur
rogate species and other taxa (e.g., fathead minnow or rainbow 
trout). The nonspecific data may not sufficiently represent the re
sponse of the smalltooth sawfish and makes the model risk high. 
After consultation with the model developers and species special
ists, NMFS regulators agreed that the lack of data on the smalltooth 
sawfish life-history, demographics, and toxicity, and the resulting 
uncertainties made the model risk too high to pursue (John Carlson, 
NOAA Fisheries, personal communication, January 18, 2017;  
Figure 4E). When species-specific data become available, it may be 
appropriate to reconsider developing this model.

Next steps
Here, we have outlined a process that combines weight of evi
dence assessments of model risk with decision risk tolerance to 
increase confidence in the application of population models in 
regulatory decisions for rare species with varying amounts of 
available data. The examples demonstrate effective ways that 
independent review and close coordination during model devel
opment minimize model risk and provide support for decision- 
making. Acknowledging and managing model risk will open the 
door for applying population models to decisions regarding rare 
species with less data. As models are increasingly used in regula
tory decision-making, processes implemented to ensure models 
fit the regulatory question and reduce model risk will improve 
each model’s applicability and increase confidence in their use 
(Townsend et al., 2019). Ideally, we recommend that regulators 
and modelers work collaboratively to develop population models 
using the presented framework to best support decision-making 
processes (Raimondo et al., 2021; Saltelli et al., 2020; Townsend 
et al., 2019).
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